AbstractProtein-protein interaction (PPI) networks represent complex intra-cellular protein interactions, and the presence or absence of such interactions can lead to biological changes in an organism. Recent network-based approaches have shown that a phenotype’s PPI network’s resilience to environmental perturbations is related to its placement in the tree of life; though we still do not know how or why certain intra-cellular factors can bring about this resilience. One such factor is gene expression, which controls the simultaneous presence of proteins for allowed extant interactions and the possibility of novel associations. Here, we explore the influence of gene expression and network properties on a PPI network’s resilience, focusing especially on ribosomal proteins—vital molecular-complexes involved in protein synthesis, which have been extensively and reliably mapped in many species. Using publicly-available data of ribosomal PPIs for E. coli, S.cerevisae, and H. sapiens, we compute changes in network resilience as new nodes (proteins) are added to the networks under three node addition mechanisms—random, degree-based, and gene-expression-based attachments. By calculating the resilience of the resulting networks, we estimate the effectiveness of these node addition mechanisms. We demonstrate that adding nodes with gene-expression-based preferential attachment (as opposed to random or degree-based) preserves and can increase the original resilience of PPI network. This holds in all three species regardless of their distributions of gene expressions or their network community structure. These findings introduce a general notion of prospective resilience, which highlights the key role of network structures in understanding the evolvability of phenotypic traits.1Author SummaryProteins in organismal cells are present at different levels of concentration and interact with other proteins to provide specific functional roles. Accumulating lists of all of these interactions, complex networks of protein interactions become apparent. This allows us to begin asking whether there are network-level mechanisms at play guiding the evolution of biological systems. Here, using this network perspective, we address two important themes in evolutionary biology (i) How are biological systems able to successfully incorporate novelty? (ii) What is the evolutionary role of biological noise in evolutionary novelty? We consider novelty to be the introduction of a new protein, represented as a new “node”, into a network. We simulate incorporation of novel proteins into Protein-Protein Interaction (PPI) networks in different ways and analyse how the resilience of the PPI network alters. We find that novel interactions guided by gene expression (indicative of concentration levels of proteins) creates a more resilient network than either uniformly random interactions or interactions guided solely by the network structure (preferential attachment). Moreover, simulated biological noise in the gene expression increases network resilience. We suggest that biological noise induces novel structure in the PPI network which has the effect of making it more resilient.