Background: Aseptic loosening of prosthesis (ALP) is one of the most common long-term complication of knee and hip arthroplasty. Wear paticle-induced osteoclastogenesis and subsequent periprosthetic osteolysis accounts for the morbidity of ALP. Here, we investigate cimifugin (CIM), a natural extract from Cimicifuga Racemosa and Saposhnikovia Divaricata, as a bone protective drug in treatment of ALP.Method: First, we deployed cell viability and osteoclast formation assays to detect the effect of noncytotoxic CIM on osteoclast differentiation in vitro. Bone slice resorption evaluation and F-actin ring immunofluorescence assays were adopted to measure bone-resorbing function affected by CIM. Then, we introduce quantitative real-time polymerase chain reaction (qRT-PCR) analysis to further identify the repressed osteoclastogenesis by CIM in gene expression level. To reveal underlying mechanism of findings above, we used Western blotting and luciferase reporter gene assay to determine the regulation manner of CIM in NF-κB and MAPKs signaling pathways. Moreover, Ti particle-induced murine calvarial osteolysis model and following histomorphometric analysis via micro-CT and immunohistochemical staining were used to demonstrate the effect of CIM on periprosthetic osteolysis in vivo. Result: CIM administration dose-dependently inhibited both bone marrow-derived macrophages (BMMs) and RAW264.7 cells derived osteoclastogenesis and bone resorption pit formation in vitro, which further supported by reduced expression of F-actin and osteoclast specific genes. According to the Western blotting analysis, inhibition of IkBa phosphorylation in NF-κB signaling pathway, not the phosphorylation of MAPKs, was detected as the suppressive effect of CIM on osteoclastogenesis. In vivo animal experiment demonstrated that CIM alleviated Ti particle-induced bone erosion and osteoclast accumulation in murine calvaria. Conclusion: The current study for the first time proved that CIM could dose-dependently inhibit RANKL-induced osetoclastogenesis via suppressing NF-κB signaling pathway in vitro and prevent periprosthetic osteolysis in vivo. These findings suggest the potential therapeutic use of CIM in ALP.