Casein is the collective name for a family of milk proteins. In bovine milk, casein comprises four peptides: αS1, αS2, β, and κ, differing in their amino acid, phosphorus and carbohydrate content but similar in their amphiphilic character. Hydrophilic and hydrophobic regions of casein show block distribution in the protein chain. Casein peptides carry negative charge on their surface as a result of phosphorylation and tend to bind nanoclusters of amorphous calcium phosphate. Due to these properties, in suitable conditions, casein molecules agglomerate into spherical micelles. The high content of casein in milk (2.75 %) has made it one of the most popular proteins. Novel research techniques have improved understanding of its properties, opening up new applications. However, casein is not just a dietary protein. Its properties promise new and unexpected applications in science and the pharmaceutical and functional food industries. One example is an encapsulation of health-related substances in casein matrices. This review discusses gelation, coacervation, self-assembly and reassembly of casein peptides as means of encapsulation. We highlight information on encapsulation of health-related substances such as drugs and dietary supplements inside casein micro- and nanoparticles.