Adenylate kinase 3 (AK3) is an enzyme located in the mitochondrial matrix involved in purine homeostasis. This protein has been considered a potential therapeutic target in chronic lymphocytic leukemia (CLL), because the silencing of the AK3 gene has inhibited cell growth in CLL in vitro models. This study aimed to design potential AK3 inhibitors by applying molecular modeling techniques. Through the mapping of AK3 binding sites, essential interaction fields for pharmacophore design were identified. Online libraries were virtually screened by using a pharmacophore model, and 6891 compounds exhibited the functional groups for interaction with the target. These compounds underwent molecular docking simulations through Surflex and GOLD programs. After visual inspection, we selected 13 compounds for pharmacokinetic properties toxicology prediction via admetSAR and Protox web servers. Finally, six compounds were chosen for further analysis.