Key Points• Enasidenib, a selective inhibitor of mutant-IDH2 enzymes, was safe and welltolerated in patients with IDH2-mutated myeloid malignancies.• Enasidenib induced hematologic responses in patients with relapsed/refractory AML in this dose-escalation and expansion study.
ABSTRACTRecurrent mutations in isocitrate dehydrogenase 2 (IDH2) occur in ~12% of patients with acute myeloid leukemia (AML). Mutated IDH2 proteins neomorphically synthesize 2-hydroxyglutarate resulting in DNA and histone hypermethylation, leading to blocked cellular differentiation. Enasidenib (AG-221/CC-90007) is a first-in-class, oral, selective inhibitor of mutant-IDH2 enzymes. This first-in-human, phase 1/2 study assessed the maximum tolerated dose (MTD), pharmacokinetic and pharmacodynamic profiles, safety, and clinical activity of enasidenib in patients with mutant-IDH2 advanced myeloid malignancies. We assessed safety outcomes for all patients (N=239) and clinical efficacy in the largest patient subgroup, those with relapsed or refractory AML (n=176), from the phase 1 dose-escalation and expansion phases of the study. In the doseescalation phase, an MTD was not reached at doses ranging from 50-650 mg daily.Enasidenib 100 mg daily was selected for the expansion phase based on pharmacokinetic and pharmacodynamic profiles and demonstrated efficacy. Grade 3-4 enasidenib-related adverse events included indirect hyperbilirubinemia (12%) and IDHinhibitor-associated differentiation syndrome (IDH-DS; 7%). Among patients with relapsed or refractory AML, overall response rate was 40.3%, with median response duration of 5.8 months. Responses were associated with cellular differentiation and maturation, typically without evidence of aplasia. Median overall survival among relapsed/refractory patients was 9.3 months, and for the 34 patients (19.3%) who attained complete remission was 19.7 months. Continuous daily enasidenib treatment was generally well-tolerated and induced hematologic responses in patients who had failed prior AML therapy. Inducing differentiation of myeloblasts, not cytotoxicity, appears to drive the clinical efficacy of enasidenib.