2020 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST) 2020
DOI: 10.1109/icest49890.2020.9232882
|View full text |Cite
|
Sign up to set email alerts
|

How Initialization is Related to Deep Neural Networks Generalization Capability: Experimental Study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 25 publications
0
2
0
1
Order By: Relevance
“…In Sandjakoska and Stojanovska [20] the authors present a similar experimental study to ours, but with different DNNs and the QM9 dataset, that provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules. It is interesting how they consider initialization as a junction point between optimization and regularization.…”
Section: Related Workmentioning
confidence: 87%
“…In Sandjakoska and Stojanovska [20] the authors present a similar experimental study to ours, but with different DNNs and the QM9 dataset, that provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules. It is interesting how they consider initialization as a junction point between optimization and regularization.…”
Section: Related Workmentioning
confidence: 87%
“…El 60 % de las imágenes se consideraron como datos de entrenamiento y el 20 % de validación, mientras que el 20 % restante, se incluye en los datos de prueba del modelo (ver Tabla 2), es decir, que este es entrenado y validado paralelamente para finalmente ser probado con imágenes nuevas que no han sido consideradas con anterioridad. En [39] se indica que los modelos que generalizan adecuadamente muestran métricas de exactitud y pérdida similares en el entrenamiento y validación, evitándose el sobreajuste.…”
Section: Set De Datosunclassified
“…Recently, deep learning has recently received great research efforts in various fields and applications, including fault detection [21]. The deep learning model is a hierarchical learning structure, in which complex nonlinear functions are used [22]. In an attempt to detect faults in a PV system based on deep learning, aerial images obtained from drones were used.…”
Section: Introductionmentioning
confidence: 99%