This paper conducted experimental and numerical investigations on seismic behaviour of masonry infilled selfcentring-beam moment-frames (SCB-MFs). First, an efficient hysteretic material model was proposed for use with the equivalent strut modelling approach of infill walls. This model was defined by backbone parameters and hysteretic parameters and implemented in the OpenSees platform to facilitate its application. Then, an approximately half-scale test of infilled SCB-MFs was carried out. The test observations and load-carrying capacities of masonry walls in the specimen were reported and analysed. The experimental hysteresis was reproduced by the numerical model using the proposed infill material. Finally, structural analyses were conducted for 3-, 6-, 9-, and 12-storey infilled SCB-MFs based on the calibrated computational model. Comparisons of the hysteretic behaviours obtained by the simulation with experimental results showed that the proposed infill material could capture the strength, stiffness, and energy dissipation during reloading, along with the residual drift during unloading. The nonlinear dynamic analyses also validated the feasibility of using the proposed model to simulate the dynamic responses of infilled SCB-MFs.