Frequency distributions are known to widely affect psycholinguistic processes. The effects of word frequency in turns-at-talk, the nucleus of social action in conversation, have, by contrast, been largely neglected. This study probes into this gap by applying corpus-linguistic methods on the conversational component of the British National Corpus (BNC) and the Freiburg Multimodal Interaction Corpus (FreMIC). The latter includes continuous pupil size measures of participants of the recorded conversations, allowing for a systematic investigation of patterns in the contained speech and language on the one hand and their relation to concurrent processing costs they may incur in speakers and recipients on the other hand. We test a first hypothesis in this vein, analyzing whether word frequency distributions within turns-at-talk are correlated with interlocutors' processing effort during the production and reception of these turns. Turns are found to generally show a regular distribution pattern of word frequency, with highly frequent words in turn-initial positions, mid-range frequency words in turn-medial positions, and low-frequency words in turn-final positions. Speakers' pupil size is found to tend to increase during the course of a turn at talk, reaching a climax toward the turn end. Notably, the observed decrease in word frequency within turns is inversely correlated with the observed increase in pupil size in speakers, but not in recipients, with steeper decreases in word frequency going along with steeper increases in pupil size in speakers. We discuss the implications of these findings for theories of speech processing, turn structure, and information packaging. Crucially, we propose that the intensification of processing effort in speakers during a turn at talk is owed to an informational climax, which entails a progression from high-frequency, low-information words through intermediate levels to low-frequency, high-information words. At least in English conversation, interlocutors seem to make use of this pattern as one way to achieve efficiency in conversational interaction, creating a regularly recurring distribution of processing load across speaking turns, which aids smooth turn transitions, content prediction, and effective information transfer.