The aim of this study is to analyze the movement track of top spinning tennis ball and the biomechanics characteristics of tennis players. This study took ten tennis players as an example. The hitting process of the top spinning ball was captured by two PULNIX high-speed cameras. The images were processed by APAS motion analysis system. The results showed that the top spinning ball moved forward while rotating in the hitting process and showed a large attack force after rebounding from the land. In biomechanics, A and B had larger angles of upper limb joints and larger joint speed. The center of gravity was on the right. The knee joint flexed, obtained the reactive force through pedaling and stretching, and transferred the power to the racket. At the moment of hitting, the racket head speed of A and B was the largest, 18.3 m/s and 18.5 m/s, respectively. At the end of the followthrough, the shoulder and elbow angle angles of A and B were small. Larger power was provided to the racket by the rapid internal rotation. The power of hitting the ball should be increased to improve the hitting effect and speed. Corresponding guidance can be provided to players to improve their technical level.