One of the barriers holding back the large-scale development of electric vehicles is underdeveloped charging infrastructure. The optimal location of charging stations has received much attention, whereas the development of charging infrastructure over time and its economic implications remain a less explored topic, especially in the context of dynamic inductive charging. This work compares the infrastructure costs for two electric vehicle charging solutions deployed on highways: fast-charging stations and a dynamic charging lane based on wireless inductive charging technology. The deployment costs are estimated using a simplified infrastructure model for a highway corridor. The model first defines the required charging capacity based on projected future demand, sizes the charging infrastructure, and then determines the related costs, revenues, and net present value. A numerical example based on the French highway context is also presented. The results show that the payback period is much longer for dynamic charging lanes that for charging stations. In addition, the charging lane infrastructure cannot be installed gradually over time but requires a major investment from the start while bringing in little revenue early on.