Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Apatite fission-track modeling reconstructs the low-temperature histories of geological samples based on measurements of the lengths of etched confined fission tracks and counted surface tracks. The duration for which each confined track was etched can be calculated from its width given the apatite etch-rate νR. We measured νR as a function of crystallographic orientation for fourteen samples from the igneous and metasedimentary basement of Tian Shan, Central Asia, to optimize the track-length distribution for modeling the thermal histories of apatites with varying chemical compositions. To first order, νR scales with the size of the track intersections with the mineral surface in the range of Dpar = 1.4–2.6 µm. We use νR for calculating the effective etch time tE of confined tracks measured after 20–60 seconds of immersion in 5.5 M HNO3 at 21°C. Considering only tracks within a predetermined etch-time window improves the reproducibility of the track-length distributions. Because an etch-time window allows excluding under- and over-etched tracks, sample immersion times can be optimized to increase the number of confined tracks suitable for modeling. Longer immersion times also allow the longest-etched tracks to develop a clear geometrical outline from which the orientation of the apatite c-axis can be inferred. We finish by comparing thermal histories obtained with a conventional 20-second immersion protocol, without tE selection, with those using the length of tracks within the range of tE = 15–30 seconds. Overall, the alternative models fit better to independent AHe data than the conventional ones.
Apatite fission-track modeling reconstructs the low-temperature histories of geological samples based on measurements of the lengths of etched confined fission tracks and counted surface tracks. The duration for which each confined track was etched can be calculated from its width given the apatite etch-rate νR. We measured νR as a function of crystallographic orientation for fourteen samples from the igneous and metasedimentary basement of Tian Shan, Central Asia, to optimize the track-length distribution for modeling the thermal histories of apatites with varying chemical compositions. To first order, νR scales with the size of the track intersections with the mineral surface in the range of Dpar = 1.4–2.6 µm. We use νR for calculating the effective etch time tE of confined tracks measured after 20–60 seconds of immersion in 5.5 M HNO3 at 21°C. Considering only tracks within a predetermined etch-time window improves the reproducibility of the track-length distributions. Because an etch-time window allows excluding under- and over-etched tracks, sample immersion times can be optimized to increase the number of confined tracks suitable for modeling. Longer immersion times also allow the longest-etched tracks to develop a clear geometrical outline from which the orientation of the apatite c-axis can be inferred. We finish by comparing thermal histories obtained with a conventional 20-second immersion protocol, without tE selection, with those using the length of tracks within the range of tE = 15–30 seconds. Overall, the alternative models fit better to independent AHe data than the conventional ones.
Fission-track modeling rests on etching, counting and measuring the lattice damage trails from uranium fission. The tools for interpreting fission-track data are advanced but the results are never better than the data. Confined-track samples must be an adequate size for statistical analysis, representative of the track population and consistent with the model assumptions and with the calibration data. Geometrical and measurement biases are understood and can be dealt with up to a point. However, the interrelated issues of etching protocol and track selection are more difficult to untangle. Our investigation favors a two-step protocol. The duration of the first step is inversely proportional to the apatite etch rate so that different apatites etch to the same Dpar. A long immersion reveals many more confined tracks, terminated by basal and prism faces. This allows consistent length measurements and permits orienting each track relative to the c-axis. Long immersion times combined with deep ion irradiation reveal confined tracks deep inside the grains. Provided it is long enough, the precise immersion time is not important if the effective etch times of the selected tracks are calculated from their measured widths. Then, whether the sample is mono- or multi-compositional, we can, post hoc, select tracks with the desired properties. The second part of the protocol has to do with the fact that fossil tracks in geological samples appear to be under-etched compared to induced tracks etched under the same conditions. This should be assumed if the semi-axes of a fitted ellipse plot above the induced-track line. In that case, an additional etch can increase the track lengths to a point where they are consistent with the model based on lab-annealing of induced tracks, a condition for valid thermal histories. Here too, it is possible to select a subset of tracks with effective etch times consistent with the model if the widths of confined tracks are measured along with their lengths and orientations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.