DMSO−water mixtures provide an intriguing hydrogen-bonding environment which has been a subject of various theoretical and experimental investigations. The structural dynamics of aqueous DMSO solutions has been investigated, using nitrosyl stretch of sodium nitroprusside (SNP, Na 2 [Fe(CN) 5 NO]) as a local vibrational probe, with the help of infrared (IR) absorption spectroscopy, vibrational pump−probe spectroscopy, and two-dimensional IR spectroscopy (2D-IR). Fourier transform infrared spectra of the nitrosyl stretch of SNP reveals that both the peak position and spectral broadening are very sensitive to the composition of the DMSO−water mixture and the subsequent structural changes occurring due to the addition of DMSO to water. The vibrational lifetime of the nitrosyl stretch displays two different linear variation regimes as a function of mole fraction of DMSO which has been assigned presumably to two different predominant structures at these compositions. However, the rotational depolarization measurements show that the reorientational times follow a bell-shaped profile, imitating the changes in the composition-dependent physical properties (viscosity) of DMSO−water solvent mixtures. To get a holistic picture of the system, 2D-IR spectroscopy of the NO stretch of SNP has been employed to study time scales of hydrogen-bond reorganization dynamics existing at different compositions. The analysis of frequency−frequency correlation function (FFCF) decay times reveal that the dynamics gets slower in intermediate DMSO concentrations than that of pure DMSO or pure water. A careful analysis reveals two anomalous regions of hydrogen-bond dynamics: X DMSO ∼0.2 and 0.4, which indicates that different hydrogen-bonded structures exist in these regions that can be effectively probed by SNP which has remained mostly elusive to previous vibrational probe-based investigations.