We present a formulation
of the multiconfigurational (MC) wave
function symmetry-adapted perturbation theory (SAPT). The method is
applicable to noncovalent interactions between monomers which require
a multiconfigurational description, in particular when the interacting
system is strongly correlated or in an electronically excited state.
SAPT(MC) is based on one- and two-particle reduced density matrices
of the monomers and assumes the single-exchange approximation for
the exchange energy contributions. Second-order terms are expressed
through response properties from extended random phase approximation
(ERPA). The dispersion components of SAPT(MC) have been introduced
in our previous works [
Hapka
M.
Hapka
M.
30525591
J. Chem. Theory Comput.
2019
15
1016
1027
;
Hapka
M.
Hapka
M.
31670950
J. Chem. Theory Comput.
2019
15
6712
6723
]. SAPT(MC) is applied either with generalized valence
bond perfect pairing (GVB) or with complete active space self-consistent
field (CASSCF) treatment of the monomers. We discuss two model multireference
systems: the H
2
··· H
2
dimer
in out-of-equilibrium geometries and interaction between the argon
atom and excited state of ethylene. Using the C
2
H
4
* ··· Ar complex as an example, we examine second-order
terms arising from negative transitions in the linear response function
of an excited monomer. We demonstrate that the negative-transition
terms must be accounted for to ensure qualitative prediction of induction
and dispersion energies and develop a procedure allowing for their
computation. Factors limiting the accuracy of SAPT(MC) are discussed
in comparison with other second-order SAPT schemes on a data set of
small single-reference dimers.