Global electricity demand is constantly growing, making the utilization of solar and wind energy sources, which also reduces negative environmental effects, more and more important. These variable energy sources have an increasing role in the global energy mix, including generating capacity. Therefore, the need for energy storage in electricity networks is becoming increasingly important. This paper presents the challenges of European variable renewable energy integration in terms of the power capacity and energy capacity of stationary storage technologies. In this research, the sustainable transition, distributed generation, and global climate action scenarios of the European Network of Transmission System Operators for 2040 were examined. The article introduces and explains the feasibility of the European variable renewable energy electricity generation targets and the theoretical maximum related to the 2040 scenarios. It also explains the determination of the storage fractions and power capacity in a new context. The aim is to clarify whether it is possible to achieve the European variable renewable energy integration targets considering the technology-specific storage aspects. According to the results, energy storage market developments and regulations which motivate the increased use of stationary energy storage systems are of great importance for a successful European solar and wind energy integration. The paper also proves that not only the energy capacity but also the power capacity of storage systems is a key factor for the effective integration of variable renewable energy sources.technologies will be key drivers in paving the way towards sustainability and energy conservation. However, today the integration of VRE sources poses a challenge to be addressed for the successful decentralization of the electricity network. From the point of view of power quality, PV and wind energy have some disadvantages. The intermittent nature of VRE sources and distributed generation remain a challenge to grid operators when scheduling power generation. On the other hand, distributed energy generation may enhance the further spread of smart grids and micro grids and, therefore, ensure a greater share of clean energy in the energy mix [8][9][10][11][12][13][14].PV and wind technologies play a key role in the shift towards green growth, a low-carbon economy, and a greater share of renewables in the energy mix [15]. In the last decade, support schemes such as the feed-in-tariff system, the declining initial capital expenditure due to the boost in innovation, and technology have proved to be essential factors that underpin this phenomenon [16][17][18]. Statistics show a considerable growth of PV and wind energy globally; 7.5% of the total 26.5% share of renewables in electricity generation was produced by VRE installations in 2017. In the same year, the global built-in PV and wind capacity amounted to 941 GW (Figure 1). The key players of the PV electricity market were China (131.1 GW), followed by the EU (108 GW), the USA ...