Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ∼35,000 sites and ∼5.6·10 6 species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we show similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upward of 1 trillion (10 12 ) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.biodiversity | microbiology | macroecology | microbiome | rare biosphere T he understanding of microbial biodiversity has rapidly transformed over the past decade. High-throughput sequencing and bioinformatics have expanded the catalog of microbial taxa by orders of magnitude, whereas the unearthing of new phyla is reshaping the tree of life (1-3). At the same time, discoveries of novel forms of metabolism have provided insight into how microbes persist in virtually all aquatic, terrestrial, engineered, and host-associated ecosystems (4, 5). However, this period of discovery has uncovered few, if any, general rules for predicting microbial biodiversity at scales of abundance that characterize, for example, the ∼10 14 cells of bacteria that inhabit a single human or the ∼10 30 cells of bacteria and archaea estimated to inhabit Earth (6, 7). Such findings would aid the estimation of global species richness and reveal whether theories of biodiversity hold across all scales of abundance and whether socalled law-like patterns of biodiversity span the tree of life.A primary goal of ecology and biodiversity theory is to predict diversity, commonness, and rarity across evolutionarily distant taxa and scales of space, time, and abundance (8-10). This goal can hardly be achieved without accounting for the most abundant, widespread, and metabolically, taxonomically, and functionally diverse organisms on Earth (i.e., microorganisms). However, tests of biodiversity theory rarely include both microbial and macrobial datasets. At the same time, the study of microbial ecology has yet to uncover quantitative relationships that predict diversity, commonness, and rarity at the scale of host microbiomes and beyond. These unexplored opportunities leave the understanding of biodiversity limited to the most conspicuous species of plants and animals. This lack of synthesi...