2022
DOI: 10.1017/jsl.2022.46
|View full text |Cite
|
Sign up to set email alerts
|

How Strong Is Ramsey’s Theorem if Infinity Can Be Weak?

Abstract: We study the first-order consequences of Ramsey’s Theorem for k-colourings of n-tuples, for fixed $n, k \ge 2$ , over the relatively weak second-order arithmetic theory $\mathrm {RCA}^*_0$ . Using the Chong–Mourad coding lemma, we show that in a model of $\mathrm {RCA}^*_0$ that does not satisfy $\Sigma ^0_1$ induction, $\mathrm {RT}^n_k$ is equivalent to its relat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 31 publications
0
0
0
Order By: Relevance