In many tasks related to realistic neurons and neural network simulation, the performance of desktop computers is nowhere near enough. To overcome this obstacle, researchers are developing FPGA-based simulators that naturally use fixed-point arithmetic. In these implementations, little attention is usually paid to the choice of numerical method for the discretization of the continuous neuron model. In our study, the implementation accuracy of a neuron described by simplified Hodgkin–Huxley equations in fixed-point arithmetic is under investigation. The principle of constructing a fixed-point neuron model with various numerical methods is described. Interspike diagrams and refractory period analysis are used for the experimental study of the synthesized discrete maps of the simplified Hodgkin–Huxley neuron model. We show that the explicit midpoint method is much better suited to simulate the neuron dynamics on an FPGA than the explicit Euler method which is in common use.