As a first step, a simple and pedagogical recall of the η-η ′ system is presented, in which the role of the axial anomaly, related to the heterochiral nature of the multiplet of (pseudo)scalar states, is underlined. As a consequence, η is close to the octet and η ′ to the singlet configuration. On the contrary, for vector and tensor states, which belong to homochiral multiplets, no anomalous contribution to masses and mixing is present. Then, the isoscalar physical states are to a very good approximation nonstrange and strange, respectively. Finally, for pseudotensor states, which are part of an heterochiral multiplet (just as pseudoscalar ones), a sizable anomalous term is expected: η 2 (1645) roughly corresponds to the octet and η 2 (1870) to the singlet.