Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
With the large-scale development of solar power generation, highly uncertain photovoltaic (PV) power output has an increasing impact on distribution networks. PV power generation has complex correlations with various weather factors, while the time series embodies multiple temporal characteristics. To more accurately quantify the uncertainty of PV power generation, this paper proposes a short-term PV power probabilistic forecasting method based on the combination of decomposition prediction and multidimensional variable dependency modeling. First, a seasonal and trend decomposition using a Loess (STL)-based PV time series feature decomposition model is constructed to obtain periodic, trend, and residual components representing different characteristics. For different components, this paper develops a periodic component prediction model based on TimeMixer for multi-scale temporal feature mixing, a long short-term memory (LSTM)-based trend component extraction and prediction model, and a multidimensional PV residual probability density prediction model optimized by Vine Copula optimized with Q-Learning. These components’ results form a short-term PV probabilistic forecasting method that considers both temporal features and multidimensional variable correlations. Experimentation with data from the Desert Knowledge Australia Solar Center (DKASC) demonstrates that the proposed method reduced root mean square error (RMSE) and mean absolute percentage error (MAPE) by at least 14.8% and 22%, respectively, compared to recent benchmark models. In probability interval prediction, while improving accuracy by 4% at a 95% confidence interval, the interval width decreased by 19%. The results show that the proposed approach has stronger adaptability and higher accuracy, which can provide more valuable references for power grid planning and decision support.
With the large-scale development of solar power generation, highly uncertain photovoltaic (PV) power output has an increasing impact on distribution networks. PV power generation has complex correlations with various weather factors, while the time series embodies multiple temporal characteristics. To more accurately quantify the uncertainty of PV power generation, this paper proposes a short-term PV power probabilistic forecasting method based on the combination of decomposition prediction and multidimensional variable dependency modeling. First, a seasonal and trend decomposition using a Loess (STL)-based PV time series feature decomposition model is constructed to obtain periodic, trend, and residual components representing different characteristics. For different components, this paper develops a periodic component prediction model based on TimeMixer for multi-scale temporal feature mixing, a long short-term memory (LSTM)-based trend component extraction and prediction model, and a multidimensional PV residual probability density prediction model optimized by Vine Copula optimized with Q-Learning. These components’ results form a short-term PV probabilistic forecasting method that considers both temporal features and multidimensional variable correlations. Experimentation with data from the Desert Knowledge Australia Solar Center (DKASC) demonstrates that the proposed method reduced root mean square error (RMSE) and mean absolute percentage error (MAPE) by at least 14.8% and 22%, respectively, compared to recent benchmark models. In probability interval prediction, while improving accuracy by 4% at a 95% confidence interval, the interval width decreased by 19%. The results show that the proposed approach has stronger adaptability and higher accuracy, which can provide more valuable references for power grid planning and decision support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.