The increasing environmental concerns of conventional antifouling coatings have led to the exploration of novel and sustainable solutions to address the biofouling caused by Limnoperna fortunei. As a rapidly expanding invasive species, the fouling process of Limnoperna fortunei is closely associated with microbial fouling, posing significant threats to the integrity of aquatic infrastructure and biodiversity. This review discusses recent progress in the development of non-toxic, eco-friendly antifouling coatings that are designed to effectively resist biofouling without using toxic chemicals. Recent research has focused on developing novel non-toxic coatings that integrate natural bioactive components with advanced material technologies. These formulations not only meet current environmental standards and exhibit minimal ecological impact, but also possess significant potential in preventing the attachment, growth, and reproduction of Limnoperna fortunei. This review aims to provide scientific guidance by proposing effective and sustainable solutions to address the ecological challenges presented by Limnoperna fortunei. The insights gained from current research not only reveal novel antifouling methods, but also identify key areas for further investigation aimed at enhancing performance and environmental compatibility.