Some oxygen defective metal oxides, such as cerium and bismuth oxides, have recently shown exceptional electrostrictive properties that are even superior to the best performing lead-based electrostrictors, e.g. lead-magnesium-niobates (PMN). Compared to piezoelectric ceramics, electromechanical mechanisms of such materials do not depend on crystalline symmetry, but on the concentration of oxygen vacancy (V O •• ) in the lattice. In this work, we investigate for the first time the role of oxygen defect configuration on the electro-chemomechanical properties. This is achieved by tuning the oxygen defects blocking barrier density in polycrystalline gadolinium doped ceria with known oxygen vacancy concentration, Ce0.9Gd0.1O2-δ, δ = 0.05. Nanometric starting powders of ca. 12 nm are sintered in different conditions, including field assisted spark plasma sintering (SPS), fast firing and conventional method at high temperatures. These approaches allow controlling grain size and Gd-dopant diffusion, i.e. via thermally driven solute drag mechanism. By correlating the electro-chemomechanical properties, we show that oxygen vacancy distribution in the materials play a key role in ceria electrostriction, overcoming the expected contributions from grain size and dopant concentration.