Background
Multisite clinical studies are increasingly using real-world data to gain real-world evidence. However, due to the heterogeneity of source data, it is difficult to analyze such data in a unified way across clinics. Therefore, the implementation of Extract-Transform-Load (ETL) or Extract-Load-Transform (ELT) processes for harmonizing local health data is necessary, in order to guarantee the data quality for research. However, the development of such processes is time-consuming and unsustainable. A promising way to ease this is the generalization of ETL/ELT processes.
Objective
In this work, we investigate existing possibilities for the development of generic ETL/ELT processes. Particularly, we focus on approaches with low development complexity by using descriptive metadata and structural metadata.
Methods
We conducted a literature review following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We used 4 publication databases (ie, PubMed, IEEE Explore, Web of Science, and Biomed Center) to search for relevant publications from 2012 to 2022. The PRISMA flow was then visualized using an R-based tool (Evidence Synthesis Hackathon). All relevant contents of the publications were extracted into a spreadsheet for further analysis and visualization.
Results
Regarding the PRISMA guidelines, we included 33 publications in this literature review. All included publications were categorized into 7 different focus groups (ie, medicine, data warehouse, big data, industry, geoinformatics, archaeology, and military). Based on the extracted data, ontology-based and rule-based approaches were the 2 most used approaches in different thematic categories. Different approaches and tools were chosen to achieve different purposes within the use cases.
Conclusions
Our literature review shows that using metadata-driven (MDD) approaches to develop an ETL/ELT process can serve different purposes in different thematic categories. The results show that it is promising to implement an ETL/ELT process by applying MDD approach to automate the data transformation from Fast Healthcare Interoperability Resources to Observational Medical Outcomes Partnership Common Data Model. However, the determining of an appropriate MDD approach and tool to implement such an ETL/ELT process remains a challenge. This is due to the lack of comprehensive insight into the characterizations of the MDD approaches presented in this study. Therefore, our next step is to evaluate the MDD approaches presented in this study and to determine the most appropriate MDD approaches and the way to integrate them into the ETL/ELT process. This could verify the ability of using MDD approaches to generalize the ETL process for harmonizing medical data.