SUMMARYDecapod crustaceans such as blue crabs possess a variety of chemoreceptors that control different stages of the feeding process. All these chemoreceptors are putative targets for feeding deterrents that cause animals to avoid or reject otherwise palatable food. As a first step towards characterizing the chemoreceptors that mediate the effect of deterrents, we used a behavioral approach to investigate their precise location. Data presented here demonstrate that chemoreceptors located on the antennules, pereiopods and mouthparts do not mediate the food-rejection effects of a variety of deterrents, both natural and artificial to crabs. Crabs always searched for deterrent-laced food and took it to their oral region. The deterrent effect was manifested as either rejection or extensive manipulation, but in both cases crabs bit the food. The biting behavior is relevant because the introduction of food into the oral cavity ensured that the deterrents gained access to the oesophageal taste receptors, and so we conclude that they are the ones mediating rejection. Additional support comes from the fact that a variety of deterrent compounds evoked oesophageal dilatation, which is mediated by oesophageal receptors and has been linked to food rejection. Further, there is a positive correlation between a compoundʼs ability to elicit rejection and its ability to evoke oesophageal dilatation. The fact that deterrents do not act at a distance is in accordance with the limited solubility of most known feeding deterrents, and likely influences predator-prey interactions and their outcome: prey organisms will be attacked and bitten before deterrents become relevant.