It has been known that the performance of high-pressure grinding rolls (HPGR) varies as a function of the method used to laterally confine the rolls, their diameter/length (aspect) ratio as well as their condition, if new or worn. However, quantifying these effects through direct experimentation in machines with reasonably large dimensions is not straightforward, given the challenge, among others, of guaranteeing that the feed material remains unchanged. The present work couples the discrete element method (DEM) to multibody dynamics (MBD) and a novel particle replacement model (PRM) to simulate the performance of a pilot-scale HPGR grinding pellet feed. It shows that rotating side plates, in particular when fitted with studs, will result in more uniform forces along the bed, which also translates in a more constant product size along the rolls as well as higher throughput. It also shows that the edge effect is not affected by roll length, leading to substantially larger proportional edge regions for high-aspect ratio rolls. On the other hand, the product from the center region of such rolls was found to be finer when pressed at identical specific forces. Finally, rolls were found to have higher throughput, but generate a coarser product when worn following the commonly observed trapezoidal profile. The approach often used in industry to compensate for roller wear is to increase the specific force and roll speed. It has been demonstrated to be effective in maintaining product fineness and throughput, as long as the minimum safety gap is not reached.