Currently, the available technologies that are capable of monitoring pulse wave velocity (PWV) in a patient are uncomfortable and obstructive. Recently, it has been hypothesized the use of photoplethysmographic (PPG) for this purpose and, therefore, the need to capture and understand the hemodynamic variables used in the PPG signal acquirement process, such as the local pulse transit time (PTT) and local PWV. This work aims to verify the feasibility of the PPG technique in the construction of local PTT and PWV monitor, using PPG sensors and low-cost integrated circuits. In this paper, the low-cost term is used as a synonym for retail sensors, available commercially and commonly used in academic projects for the Arduino platform. It is important for the development of wearable technologies that can be used in a future project to monitor PTT and PWV using a minimally obstructive approach.