The molecular chaperone HSP90 plays a crucial role in cancer cell growth and survival by stabilizing cancer-related proteins. A number of HSP90 inhibitors have been developed clinically for cancer therapy; however, potential off-target and/or HSP90-related toxicities have proved problematic. The 4-(1H-pyrazolo [3,4-b]pyridine-1-yl)benzamide TAS-116 is a selective inhibitor of cytosolic HSP90a and b that does not inhibit HSP90 paralogs such as endoplasmic reticulum GRP94 or mitochondrial TRAP1. Oral administration of TAS-116 led to tumor shrinkage in human tumor xenograft mouse models accompanied by depletion of multiple HSP90 clients, demonstrating that the inhibition of HSP90a and b alone was sufficient to exert antitumor activity in certain tumor models. One of the most notable HSP90-related adverse events universally observed to differing degrees in the clinical setting is visual disturbance. A two-week administration of the isoxazole resorcinol NVP-AUY922, an HSP90 inhibitor, caused marked degeneration and disarrangement of the outer nuclear layer of the retina and induced photoreceptor cell death in rats. In contrast, TAS-116 did not produce detectable photoreceptor injury in rats, probably due to its lower distribution in retinal tissue. Importantly, in a rat model, the antitumor activity of TAS-116 was accompanied by a higher distribution of the compound in subcutaneously xenografted NCI-H1975 non-small cell lung carcinoma tumors than in retina. Moreover, TAS-116 showed activity against orthotopically transplanted NCI-H1975 lung tumors. Together, these data suggest that TAS-116 has a potential to maximize antitumor activity while minimizing adverse effects such as visual disturbances that are observed with other compounds of this class.