Abstract --In low speed applications, variable reluctance permanent magnet machines are often proposed due to their efficient use of magnet material and high torque density. This becomes even more important in large linear applications, where the translator is longer than the stator. Often, however, very low power factors are experienced by this class of machine. This paper proposes a V-shape flux concentrated version of a consequent pole linear Vernier hybrid permanent magnet machine and compares it to a surface mounted magnet variant. Using finite element analysis validated by two laboratory prototypes, it is shown that the flux concentrated version increases the airgap flux density, which potentially leads to an improvement in the force density and efficiency, or can be used to increase the operating power factor.Index Terms--consequent pole, V-shape, Vernier machine, power factor, linear machine, leakage flux.