Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Climate change threatens biodiversity by compromising the ability to balance energy and water, influencing animal behaviour, species interactions, distribution and ultimately survival. Predicting climate change effects on thermal physiology is complicated by interspecific variation in thermal tolerance limits, thermoregulatory behaviour and heterogenous thermal landscapes. We develop an approach for assessing thermal vulnerability for endotherms by incorporating behaviour and microsite data into a biophysical model. We parameterised the model using species‐specific functional traits and published behavioural data on hotter (maximum daily temperature, Tmax > 35°C) and cooler days (Tmax < 35°C). Incorporating continuous time‐activity focal observations of behaviour into the biophysical approach reveals that the three insectivorous birds modelled here are at greater risk of lethal hyperthermia than dehydration under climate change, contrary to previous thermal risk assessments. Southern yellow‐billed hornbills Tockus leucomelas, southern pied babblers Turdoides bicolor and southern fiscals Lanius collaris are predicted to experience a risk of lethal hyperthermia on ~ 24, 65 and 40 more days year−1, respectively, in 2100 relative to current conditions. Maintaining water balance may also become increasingly challenging. Babblers are predicted to experience a 57% increase (to ~186 days year−1) in exposure to conditions associated with net negative 24 h water balance in the absence of drinking, with ~ 86 of those days associated with a risk of lethal dehydration. Hornbills and fiscals are predicted to experience ~ 84 and 100 days year−1, respectively, associated with net negative 24 h water balance, with ≤ 20 of those days associated with a risk of lethal dehydration. Integrating continuous time‐activity focal data is vital to understand and predict thermal challenges animals likely experience. We provide a comprehensive thermal risk assessment and emphasise the importance of thermoregulatory and drinking behaviour for endotherm persistence in coming decades.
Climate change threatens biodiversity by compromising the ability to balance energy and water, influencing animal behaviour, species interactions, distribution and ultimately survival. Predicting climate change effects on thermal physiology is complicated by interspecific variation in thermal tolerance limits, thermoregulatory behaviour and heterogenous thermal landscapes. We develop an approach for assessing thermal vulnerability for endotherms by incorporating behaviour and microsite data into a biophysical model. We parameterised the model using species‐specific functional traits and published behavioural data on hotter (maximum daily temperature, Tmax > 35°C) and cooler days (Tmax < 35°C). Incorporating continuous time‐activity focal observations of behaviour into the biophysical approach reveals that the three insectivorous birds modelled here are at greater risk of lethal hyperthermia than dehydration under climate change, contrary to previous thermal risk assessments. Southern yellow‐billed hornbills Tockus leucomelas, southern pied babblers Turdoides bicolor and southern fiscals Lanius collaris are predicted to experience a risk of lethal hyperthermia on ~ 24, 65 and 40 more days year−1, respectively, in 2100 relative to current conditions. Maintaining water balance may also become increasingly challenging. Babblers are predicted to experience a 57% increase (to ~186 days year−1) in exposure to conditions associated with net negative 24 h water balance in the absence of drinking, with ~ 86 of those days associated with a risk of lethal dehydration. Hornbills and fiscals are predicted to experience ~ 84 and 100 days year−1, respectively, associated with net negative 24 h water balance, with ≤ 20 of those days associated with a risk of lethal dehydration. Integrating continuous time‐activity focal data is vital to understand and predict thermal challenges animals likely experience. We provide a comprehensive thermal risk assessment and emphasise the importance of thermoregulatory and drinking behaviour for endotherm persistence in coming decades.
Huddling behaviour is observed across various mammalian and avian species. Huddling, a behaviour wherein animals maintain close physical contact with conspecifics for warmth and social bonding, is widely documented among species in cold environments as a crucial thermoregulatory mechanism. Interestingly, on Shodoshima, Japanese macaques form exceptionally large huddling clusters, often exceeding 50 individuals, a significant deviation from the smaller groups observed in other populations (Arashyama, Katsuyama, and Taksakiyama) and climates. This study aims to uncover the mechanisms behind the formation and size of these huddling clusters, proposing that such behaviours can be explained by simple probabilistic rules influenced by environmental conditions, the current cluster size, and individual decisions. Employing a computational model developed in Netlogo, we seek to demonstrate how emergent properties like the formation and dissolution of clusters arise from collective individual actions. We investigate whether the observed differences in huddling behaviour, particularly the larger cluster sizes on Shodoshima compared to those in colder habitats, reflect variations in social tolerance and cohesion. The model incorporates factors such as environmental temperature, cluster size, and individual decision-making, offering insights into the adaptability of social behaviours under environmental pressures. The findings suggest that temperature plays a crucial role in influencing huddling behaviour, with larger clusters forming in colder climates as individuals seek warmth. However, the study also highlights the importance of joining and leaving a cluster in terms of probability in the dynamics of huddling behaviour. We discussed the large clusters on Shodoshima as a result of a combination of environmental factors and a unique social tolerance and cohesion among the macaques. This study contributes to our understanding of complex social phenomena through the lens of self-organisation, illustrating how simple local interactions can give rise to intricate social structures and behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.