2021
DOI: 10.1016/j.neucom.2020.04.151
|View full text |Cite
|
Sign up to set email alerts
|

Human activity recognition based on smartphone and wearable sensors using multiscale DCNN ensemble

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
27
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 61 publications
(29 citation statements)
references
References 7 publications
0
27
0
2
Order By: Relevance
“…Depending on the specifics of eccentric motions in, e.g., gym exercises (as we study them in this paper) these durations can get extended to 1-3 s [78,79]. Modeling such variations of motion lengths is important for deriving effective feature representations, be it explicitly through feature engineering or implicitly through end-to-end learning [80,81]. Our model explicitly captures varying lengths of movement signals by utilizing multi-length kernel windows (multi-window) for the convolution operation, i.e., feature extraction.…”
Section: Multiple Kernel Window Size For Capturing Varying Motion Lengthmentioning
confidence: 99%
“…Depending on the specifics of eccentric motions in, e.g., gym exercises (as we study them in this paper) these durations can get extended to 1-3 s [78,79]. Modeling such variations of motion lengths is important for deriving effective feature representations, be it explicitly through feature engineering or implicitly through end-to-end learning [80,81]. Our model explicitly captures varying lengths of movement signals by utilizing multi-length kernel windows (multi-window) for the convolution operation, i.e., feature extraction.…”
Section: Multiple Kernel Window Size For Capturing Varying Motion Lengthmentioning
confidence: 99%
“…Teng et al [15] proposed a network based on convolutional neurons with a local loss after each CNN module, they compared a baseline model containing three CNN layers and one Fully Connected layer, with the same model having the first time similarity matching loss, a second time crossentropy loss and the third time a combination between the two previous losses. Sena et al [16] divided the data into several inputs according to the type of sensor, then for each of them they built a deep CNN to extract temporal scales and features. Their method employs a DCNN, which is made up of two convolutional layers followed by a Maxpooling layer.…”
Section: Review Of Literature IImentioning
confidence: 99%
“…Perangkat pintar yang telah digunakan seperti smartphone [9], smartwatch, dan smartglasses [21]. Dari beberapa sensor yang ada pada perangkat pintar, akselerometer [9], giroskop [4] dan magnometer [14] merupakan sensor yang telah digunakan untuk pengambilan data HAR.…”
Section: Metode Penelitianunclassified
“…Tabel 3 menunjukkan fitur-fitur yang sering digunakan dalam konteks HAR menggunakan sensor inersia. Meskipun kedua jenis fitur tersebut memiliki informasi yang berbeda, beberapa penelitian menggunakan hanya salah satu domain saja untuk mengurangi kompleksitas dan pertimbangan komputasi [14][53] [54]. Di sisi lain, penggunaan kedua domain tersebut secara bersamaan memiliki nilai lebih karena menangkap informasi dari berbagai sudut pandang data.…”
Section: De-noisingunclassified
See 1 more Smart Citation