BACKGROUND: Anti-RhD administration can prevent de novo anti-RhD formation following RhD+ red blood cell (RBC) exposure, termed antibody-mediated immunosuppression (AMIS). Recent studies suggest that AMIS may occur through target antigen alterations, known as antigen modulation. However, studies suggest that AMIS may occur independent of antigen modulation. In particular, AMIS to RBCs that transgenically express the fusion hen egg lysozyme-ovalbumin-Duffy (HOD) antigen have been shown to occur independent of activating Fcγ receptors (FcγRs) thought to be required for antigen modulation. Therefore, we sought to determine the mechanism behind AMIS following HOD RBC exposure.
STUDY DESIGN AND METHODS: Following transferof HOD RBCs into wild-type or FcγR-chain knockout recipients in the presence or absence of monoclonal anti-hen egg lysozyme (HEL) antibody, individually or in combination, HOD antigen levels and anti-HOD antibody formation were examined.ABBREVIATIONS: AMIS = antibody-mediated immunosuppression; DAT = direct antiglobulin test; FcγRs = Fcγ receptors; HEL = hen egg lysozyme; HOD = hen egg lysozymeovalbumin-Duffy; mHEL = membrane-bound form of HEL.