ChemR23 is a G protein–coupled receptor that is triggered by two ligands, the peptide chemerin and the eicosapentaenoic acid–derived lipid mediator resolvin E1 (RvE1). Chemerin acts as a chemoattractant for monocytes and macrophages, whereas RvE1 promotes resolution of inflammation-inducing macrophage phagocytosis of apoptotic neutrophils. Although ChemR23-mediated signaling plays a role in mononuclear cell migration to inflamed tissue, as well as in the resolution of inflammation, its regulation in different polarization states of macrophages is largely unknown. We analyzed the expression and function of ChemR23 in monocytes and differently activated human primary macrophages. Using 5′ RACE, we identified three transcription start sites and several splice variants of ChemR23 in both monocytes and macrophages. Although the promoters P1 and P3 are used equally in unpolarized macrophages, stimulation with LPS or IFN-γ leads to increased transcription from P3 in inflammatory M1 macrophages. Such ChemR23-expressing M1 macrophages are chemotactic to chemerin, whereas M2 macrophages not expressing ChemR23 surface receptor are not. Repolarization of ChemR23-expressing M1 macrophages with 10 nM RvE1 increases IL-10 transcription and phagocytosis of microbial particles, leading to a resolution-type macrophage distinct from the M2 phenotype. These results show that ChemR23 is tightly regulated in response to inflammatory and anti-inflammatory stimuli. The restricted expression of ChemR23 in naive and M1 macrophages supports the role of ChemR23 in the attraction of macrophages to inflamed tissue by chemerin and in the initiation of resolution of inflammation through RvE1-mediated repolarization of human M1 macrophages toward resolution-type macrophages.