The present study defined a simplified physiologically based pharmacokinetic (PBPK) model for 1,4-dioxane in humans based on in vitro metabolic parameters determined using relevant liver microsomes, coefficients derived in silico, physiological parameters derived from the literature, and a developed PBPK model in rats. The model consists of a chemical absorption compartment, a metabolizing compartment, and a central compartment for 1,4-dioxane. Evaluation of the rat model was performed by comparisons with experimental pharmacokinetic values from blood and urine obtained from rats in vivo after daily oral treatment with 1,4-dioxane (500 mg/kg, a noobserved-adverse-effect level) for 14 days. Elimination rates of 1,4-dioxane in vitro were established using data from rat liver microsomes and from pooled human liver microsomes. 1,4-Dioxane was expected to be absorbed and cleared rapidly from the body in silico, as was the case for rats confirmed experimentally in vivo with repeated low-dose treatments. These results indicate that the simplified PBPK model for 1,4-dioxane is useful for a forward dosimetry approach in humans. This model may also be useful for simulating blood concentrations of other related compounds resulting from exposure to low chemical doses.