“…In culture of man-made injured meniscus explants in vitro, meniscus-derived pluripotent cells could bridge and reintegrate torn meniscal fibrocartilage along the tear channel, as evidenced by the migratory ability in response to the chemokine signaling stromal-derived factor-1/stromal-derived factor-1 receptor (SDF-1/ CXCR4) axis, a pronounced tendency toward chondrogenic differentiation, a greater than 100% increase in fibrochondrocyte proliferation, the elevated expression of Sox9 and decreased expression of type X collagen, and the resistance to cellular hypertrophy and terminal differentiation during the tissue repair process in a rat [47] and a rabbit [19] model. On this basis, Jayasuriya et al [47] proposed that the initiation of the observed meniscal tissue repair is possible without first forming a blood clot, provided that an influx of stem cells is readily available near the damage site. Furthermore, the intraarticular injection of meniscus-derived pluripotent cells can enhance the regeneration of the injured meniscus at an early stage of OA, promoting neotissue formation with an improved shape and increased mature ECM and resulting in reduced expression of OA markers such as type I collagen, type X collagen, and hypoxia-inducible factor 2a (HIF-2a) but increased expression of collagen II [17,18].…”