Sex hormones are the physiological factors that regulate neurogenesis during embryogenesis and continuing through adulthood. These hormones support the formation of brain structures such as dendritic spines, axons and synapses required for the capture of information (memories). Intriguingly, a recent animal study has demonstrated that induction of neurogenesis results in the loss of previously encoded memories in animals (e.g. infantile amnesia). In this connection, much evidence now indicates that Alzheimer’s disease (AD) also involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Since sex hormones control when and how neurons proliferate and differentiate, the endocrine dyscrasia that accompanies menopause and andropause is a key signaling event that impacts neurogenesis and the acquisition, processing, storage and recall of memories. Here we review the biochemical, epidemiological and clinical evidence that alterations in endocrine signaling with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle with neurite retraction that leads to neuron dysfunction and death. When the reproductive axis is in balance, luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the ratio of LH:sex steroids as driving aberrant mitotic events mediated by the upregulation of tumor necrosis factor, amyloid-β precursor protein processing towards the production of mitogenic Aβ, and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive studies also demonstrate the negative consequences of a high LH:sex steroid ratio on human cognitive performance. Prospective epidemiological and clinical evidence in humans supports lowering the ratio of circulating gonadotropins-GnRH to sex steroids in reducing the incidence of AD and halting cognitive decline. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson’s disease.