This paper evaluates two deep learning techniques that are basic Convolutional Neural Network (CNN) and AlexNet along with a classical local descriptor that is Bag of Features (BoF) with Speeded-Up Robust Feature (SURF) and Support Vector Machine (SVM) classifier for indoor object recognition. A publicly available dataset, MCIndoor20000, has been used in this experiment that consists of doors, signage, and stairs images of Marshfield Clinic. Experimental results indicate that AlexNet achieves the highest accuracy followed by basic CNN and BoF. Furthermore, the results also show that BoF, a machine learning technique, can also produce a high accuracy performance as basic CNN, a deep learning technique, for image recognition.