Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by antibodies (IgG and IgE) targeting cell-substrate adhesion proteins. A variety of BP models suggest that autoantibody-dependent neutrophil degranulation is essential for blister formation. However, lesional biopsies reveal a predominance of eosinophils and few neutrophils. Our goal was to evaluate the role of antibodies and complement in eosinophil localization, degranulation, and split formation at the dermo-epidermal junction (DEJ) utilizing a human skin cryosection model of BP paired with a human eosinophilic cell line, 15HL-60. Expression of receptors for IgG (FcγRII), IgE (FcεRI), and complement (CR1 and CR3) was confirmed on 15HL-60 cells using flow cytometry. 15HL-60 expression of granule protein (eosinophil derived neurotoxin (EDN) and eosinophil peroxidase (EPO)) mRNA and their degranulation in vitro was confirmed using RT-PCR and ELISA, respectively. For cryosection experiments, BP or control sera or IgG and IgE antibodies purified from BP sera were utilized in combination with 15HL-60 cells ± fresh complement. Both BP serum and fresh complement were required for localization of 15-HL60 cells to the DEJ. Interestingly, eosinophil localization to the DEJ was dependent on IgG, but not IgE, and complement. However, no subepidermal split was observed. Additionally, the 15HL-60 cells did not degranulate under any experimental conditions and direct application of cell lysate to cryosections did not result in a split. Our observation that eosinophil localization to the DEJ is dependent on IgG mediated complement fixation provides additional insight into the sequence of events during the development of BP lesions.