Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We propose a model of incentives for data pricing in large mobile networks, in which an operator wishes to balance the number of connections (active users) of different classes of users in the different cells and at different time instants, in order to ensure them a sufficient quality of service. We assume that each user has a given total demand per day for different types of applications, which he may assign to different time slots and locations, depending on his own mobility, on his preferences and on price discounts proposed by the operator. We show that this can be cast as a bilevel programming problem with a special structure allowing us to develop a polynomial time decomposition algorithm suitable for large networks. First, we determine the optimal number of connections (which maximizes a measure of balance); next, we solve an inverse problem and determine the prices generating this traffic. Our results exploit a recently developed application of
We propose a model of incentives for data pricing in large mobile networks, in which an operator wishes to balance the number of connections (active users) of different classes of users in the different cells and at different time instants, in order to ensure them a sufficient quality of service. We assume that each user has a given total demand per day for different types of applications, which he may assign to different time slots and locations, depending on his own mobility, on his preferences and on price discounts proposed by the operator. We show that this can be cast as a bilevel programming problem with a special structure allowing us to develop a polynomial time decomposition algorithm suitable for large networks. First, we determine the optimal number of connections (which maximizes a measure of balance); next, we solve an inverse problem and determine the prices generating this traffic. Our results exploit a recently developed application of
Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. The concept of offloading refers to the exploitation of network heterogeneity with the objective to mitigate the load of the cellular network infrastructure. In this thesis a multicast protocol for short range networks that exploits the characteristics of physical layer network coding is presented. In the proposed protocol, named CooPNC, a novel cooperative approach is provided that allows collision resolutions with the use of an indirect inter-network cooperation scheme. Through this scheme, a reliable multicast protocol for partially overlapping short range networks with low control overhead is provided. It is shown that with CooPNC, higher throughput and energy efficiency are achieved, while it presents lower delay compared to state-of-the-art multicast protocols. A detailed description of the proposed protocol is provided, with a simple scenario of overlapping networks and also for a generalised scalable scenario. Through mathematical analysis and simulations it is proved that CooPNC presents significant performance gains compared to other state-of-the-art multicast protocols for short range networks. In order to reveal the performance bounds of Physical Layer Network Coding, the so-called Cross Network is investigated under diverse Network Coding (NC) techniques. The impact of Medium Access Control (MAC) layer fairness on the throughput performance of the network is provided, for the cases of pure relaying, digital NC with and without overhearing and physical layer NC with and without overhearing. A comparison among these techniques is presented and the throughput bounds, caused by MAC layer limitations, are discussed. Furthermore, it is shown that significant coding gains are achieved with digital and physical layer NC and the energy efficiency performance of each NC case is presented, when applied on the Cross Network.In the second part of this thesis, the uplink offloading using IP Flow Mobility (IFOM) is also investigated. IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF. To overcome these limitations, a weighted proportionally fair bandwidth allocation algorithm is proposed, regarding the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation algorithm for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. With the proposed approach, the energy efficiency of the UEs is improved, and the offloaded data volume is increased under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, both the different upload data needs of the UEs, along with their LTE spectrum efficiency are considered, and an access mechanism is proposed that improves the use of WiFi access in uplink offloading. In the LTE part, a two-stage pricing-based rate allocation is proposed, under both linear and exponential pricing approaches, with the objective to satisfy all offloading UEs regarding their LTE uplink access. The existence of a malicious UE is also considered that aims to exploit the WiFi bandwidth against its peers in order to upload less data through the energy demanding LTE uplink and a reputation based method is proposed to combat its selfish operation. This approach is theoretically analysed and its performance is evaluated, regarding the malicious and the truthful UEs in terms of energy efficiency. It is shown that while the malicious UE presents better energy efficiency before being detected, its performance is significantly degraded with the proposed reaction method. La derivación del tráfico de datos móviles (en inglés data offloading) ha sido propuesta como una solución al problema de la congestión de la red, un problema que empeora continuamente debido al incremento de la demanda de datos móviles. El concepto de offloading se entiende como la explotación de la heterogeneidad de la red con el objetivo de mitigar la carga de la infraestructura de las redes celulares. En esta tesis se presenta un protocolo multicast para redes de corto alcance (short range networks) que explota las características de la codificación de red en la capa física (physical layer network coding). En el protocolo propuesto, llamado CooPMC, se implementa una solución cooperativa que permite la resolución de colisiones mediante la utilización de un esquema indirecto de cooperación entre redes. Gracias a este esquema, se consigue un protocolo multicast fiable i con poco overhead de control para redes de corto alcance parcialmente solapadas. Se demuestra que el protocolo CooPNC consigue una mayor tasa de transmisión neta (throughput) y una mejor eficiencia energética, a la vez que el retardo se mantiene por debajo del obtenido con los protocolos multicast del estado del arte. La tesis ofrece una descripción detallada del protocolo propuesto, tanto para un escenario simple de redes solapadas como también para un escenario general escalable. Se demuestra mediante análisis matemático y simulaciones que CooPNC ofrece mejoras significativas en comparación con los protocolos multicast para redes de corto alcance del estado del arte. Con el objetivo de encontrar los límites de la codificación de red en la capa física (physical layer network coding), se estudia el llamado Cross Network bajo distintas técnicas de Network Coding (NC). Se proporciona el impacto de la equidad (fairness) de la capa de control de acceso al medio (Medium Access Control, MAC), para los casos de repetidor puro (pure relaying), NC digital con y sin escucha del medio, y NC en la capa física con y sin escucha del medio. En la segunda parte de la tesis se investiga el offloading en el enlace ascendente mediante IP Flow Mobility (IFOM). El IFOM permite a los usuarios móviles de LTE mantener dos flujos de datos concurrentes, uno a través de LTE y el otro a través de la tecnología de acceso WiFi, que presenta limitaciones en el enlace ascendente debido a la equidad (fairness) inherente del diseño de IEEE 802.11 DCF. Para superar estas limitaciones, se propone un algoritmo proporcional ponderado de asignación de banda para el volumen de datos derivado a través de WiFi, junto con un algoritmo de asignación de tasa de transmisión basado en pricing para el volumen de datos del enlace ascendente de LTE. Con la solución propuesta, se mejora la eficiencia energética de los usuarios móviles, y se incrementa el volumen de datos que se pueden derivar gracias a la utilización concurrente de tecnologías de acceso que permite IFOM. En el algoritmo proporcional ponderado de asignación de banda de WiFi, se toman en consideración tanto las distintas necesidades de los usuarios en el enlace ascendente como su eficiencia espectral en LTE, y se propone un mecanismo de acceso que mejora el uso de WiFi para el tráfico derivado en el enlace ascendente. En cuanto a la parte de LTE, se propone un algoritmo en dos etapas de asignación de tasa de transmisión basada en pricing (con propuestas de pricing exponencial y lineal) con el objetivo de satisfacer el enlace ascendente de los usuarios en LTE. También se contempla la existencia de usuarios maliciosos, que pretenden utilizar el ancho de banda WiFi contra sus iguales para transmitir menos datos a través del enlace ascendente de LTE (menos eficiente energéticamente). Para ello se propone un método basado en la reputación que combate el funcionamiento egoísta (selfish).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.