2020
DOI: 10.11591/ijeecs.v17.i3.pp1355-1361
|View full text |Cite
|
Sign up to set email alerts
|

Human gait recognition using orthogonal least square as feature selection

Abstract: <span>This study investigates the potential gait features that are related to human recognition using orthogonal least square (OLS). Firstly, video of 30 subjects walking in oblique view was recorded using Kinect. Next, all 20 skeleton joints in 3D space were extracted and further selected using OLS. Additionally, SVM with linear, polynomial and radial basis function (RBF) kernel was used to classify the selected features. As consequences, OLS was proven to be able to identify the significant features us… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?