The 3 poly(A) structure improves translation of a eukaryotic mRNA by 50-fold in vivo. This enhancement has been suggested to be due to an interaction of the poly(A) binding protein, Pab1p, with eukaryotic translation initiation factor 4G (eIF4G). However, we find that mutation of eIF4G eliminating its interaction with Pab1p does not diminish the preference for poly(A) ؉ mRNA in vivo, indicating another role for poly(A). We show that either the absence of Fun12p (eIF5B), or a defect in eIF5, proteins involved in 60S ribosomal subunit joining, specifically reduces the translation of poly(A) ؉ mRNA, suggesting that poly(A) may have a role in promoting the joining step. Deletion of two nonessential putative RNA helicases (genes SKI2 and SLH1) makes poly(A) dispensable for translation. However, in the absence of Fun12p, eliminating Ski2p and Slh1p shows little enhancement of expression of non-poly(A) mRNA. This suggests that Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecting 60S subunit joining.The 5Ј cap (7-methyl-GpppG. . .) and 3Ј poly(A) structures of eukaryotic mRNAs are both critically important for translation, for mRNA transport from the nucleus, and for mRNA stability in both the nucleus and the cytoplasm. The in vivo requirement for translation for the 3Ј poly(A) structure, estimated by electroporation of mRNAs into living cells, is about 50-fold, while that for the 5Ј cap is about 20-fold (11, 12).The effects of the 5Ј cap on translation are mediated by the cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E) (Cdc33p), which associates with eIF4G in the eIF4F complex to promote binding of the mRNA to the 40S ribosomal subunit (through eIF3). A 43S preinitiation complex consisting of the 40S subunit, eIF3, and eIF2-GTP-MettRNA iMet is thought to bind to an mRNA mediated by interaction between eIF3 and eIF4G. This complex scans from the cap at the 5Ј end of the mRNA to the first AUG. There, with the help of eIF5 (Tif5p) and eIF5B (Fun12p), 60S subunit joining occurs and translation begins (27; reviewed in references 9 and 37). 60S subunit joining requires both eIF5 and eIF5B. While eIF5 promotes GTP hydrolysis by eIF2, enabling release of the initiation factors from the 40S subunit, eIF5B has its own GTP binding activity and hydrolyzes GTP in a ribosome-dependent reaction (27).The role of the 3Ј poly(A) structure in mRNA translation is not yet completely clear. The poly(A) binding protein (Pab1p) is believed to mediate many of the effects of the 3Ј poly(A) structure (reviewed in reference 34). Because the poly(A) tail apparently has roles in nuclear processes as well as cytoplasmic events (22), dissecting these mechanisms is difficult. The PAB1 gene is essential, indicating that at least one of the functions of Pab1p is critical to the cell.