The aim of this study was to compare the performance of the newly developed SMG HHV-6 Q Real-Time PCR Kit (SMG assay) with the RealStar HHV-6 PCR Kit (RealStar assay). The analytical sensitivity and specificity, linearity, and precision of the SMG assay were evaluated. The clinical performance of the SMG assay was assessed and compared with that of the RealStar assay using 207 clinical specimens (HHV-6A positive,
n
= 51; HHV-6B positive,
n
= 64; HHV-6A/B negative,
n
= 92). The limit of detection of the SMG assay was 2.92 log
10
copies/mL for HHV-6A DNA and 2.88 log
10
copies/mL for HHV-6B DNA. The linear range was determined to be 3.40–9.00 log
10
copies/mL for both viruses. Intra- and inter-assay variability were below 5% at concentrations ranging from 4 to 9 log
10
copies/mL. No cross-reactivity was observed with the 25 microorganisms included in the specificity panel. The clinical sensitivity and specificity of the SMG and RealStar assays compared to in-house polymerase chain reaction and sequencing were as follows: SMG assay, 98.0% and 100% for HHV-6A DNA, respectively, and 96.9% and 100% for HHV-6B DNA, respectively; RealStar assay, 98.0% and 100% for HHV-6A DNA, respectively, and 90.6% and 100% for HHV-6B DNA, respectively. The correlation coefficients between viral loads measured by the two assays were 0.948 and 0.975, with mean differences of 0.62 and 0.32 log
10
copies/mL for HHV-6A and HHV-6B DNA, respectively. These results demonstrate that the SMG assay is a sensitive and reliable tool for the quantitative detection and differentiation of HHV-6A and HHV-6B DNA.
IMPORTANCE
Quantitative real-time PCR (qPCR) that can distinguish between HHV-6A and HHV-6B DNA is recommended for diagnosis of active infection. The SMG HHV-6 Q Real-Time PCR Kit (SMG assay) is a newly developed qPCR assay that can differentiate between HHV-6A and HHV-6B DNA; however, little is known about its performance. In this study, we assessed the performance of the SMG assay and compared it with that of a commercially available qPCR assay, the RealStar HHV-6 PCR Kit (RealStar assay). The SMG assay demonstrated excellent analytical sensitivity and specificity, precision, and linearity. Furthermore, the viral loads measured by the SMG assay were highly correlated with those measured by the RealStar assay. Our results suggest that the SMG assay is a useful diagnostic tool for quantitative detection and differentiation of HHV-6A and HHV-6B DNA.