Allergen immunotherapy (IT) has long-term efficacy in IgE-mediated allergic rhinitis and asthma. IT has been shown to modify lymphocyte responses to allergen, inducing IL-10 production and IgG Abs. In contrast, a putative role for IgA and local TGF-β-producing cells remains to be determined. In 44 patients with seasonal rhinitis/asthma, serum IgA1, IgA2, and polymeric (J chain-containing) Abs to the major allergen Phl p 5 were determined by ELISA before and after a 2-year double-blind trial of grass pollen (Phleum pratense) injection IT. Nasal TGF-β expression was assessed by in situ hybridization. Sera from five IT patients were fractionated for functional analysis of the effects of IgA and IgG Abs on IL-10 production by blood monocytes and allergen-IgE binding to B cells. Serum Phl p 5-specific IgA2 Abs increased after a 2-year treatment (∼8-fold increase, p = 0.002) in contrast to IgA1. Increases in polymeric Abs to Phl p 5 (∼2-fold increase, p = 0.02) and in nasal TGF-β mRNA (p = 0.05) were also observed, and TGF-β mRNA correlated with serum Phl p 5 IgA2 (r = 0.61, p = 0.009). Post-IT IgA fractions triggered IL-10 secretion by monocytes while not inhibiting allergen-IgE binding to B cells as observed with IgG fractions. This study shows for the first time that the IgA response to IT is selective for IgA2, correlates with increased local TGF-β expression, and induces monocyte IL-10 expression, suggesting that IgA Abs could thereby contribute to the tolerance developed in IT-treated allergic patients.