Abstract. Understanding the processes shaping biological communities under interacting disturbances is a core challenge in ecology. Although the impacts of human-induced disturbances on forest ecosystems have been extensively studied, less attention has been paid to understanding how tree regeneration at the community level responds to such disturbances. Moreover, these previous studies have not considered how these effects change according to major social and environmental factors that can influence forest use at a landscape scale. In this study, we investigate the effects of cattle grazing and selective logging on the composition of tree regeneration communities in relation to forest successional stage and land tenure regime in Chilean temperate forests, a global biodiversity hotspot. We recorded seedlings, saplings and basal area of stumps of tree species (as a surrogate for selective logging), and number of cattle dung pats (as a surrogate for cattle pressure) in 129 25 3 20 m plots in small (,200 ha) and large properties in different successional stages (old-growth, intermediate, secondary forests). The regeneration of the ten more abundant species as predicted by human disturbance, land tenure, forest successional stage, and number of parent trees was modelled using generalised linear models. Predictions for each individual model were made under different scenarios of human disturbance. The predicted regeneration results were assembled and subjected to ordination analyses and permutation multivariate analyses of variance to determine differences in regeneration composition under each scenario. In most cases, best-fit models contained at least one of the explanatory variables accounting for human disturbance. The effects of selective logging on tree regeneration varied depending on land tenure regime, but cattle grazing always exhibited a negative effect. Our results revealed that cattle have a more negative effect on forest regeneration than selective logging, especially in old-growth forests and small properties. Our analytical approach contributes to the understanding of the differential influence of human-induced disturbances on the tree regeneration community at a landscape scale. It can inform conservation policies and actions, which should focus on addressing the main disturbance factors and on developing strategies to conserve the most sensitive species to such disturbances.