This study was conducted to develop stem volume models for the volume estimation of Quercus glauca Thunb. in Jeju Island, Republic of Korea. Furthermore, this study validated the developed stem volume models using an independent dataset. A total of 167 trees were measured for their diameter at breast height (DBH), total height and stem volume using non-destructive sampling methods. Eighty percent of the dataset was used for the initial model development while the remaining 20% was used for model validation. The performance of the different models was evaluated using the following fit statistics: standard error of estimate (SEE), mean bias (E ), absolute mean deviation (AMD), coefficient of determination (R 2 ), and root mean square error (RMSE). The AMD of the five models from the different DBH classes were determined using the validation dataset. Model 5 (V = aD b H c ), which estimates volume using DBH and total height as predicting variables, had the best SEE (0.02745), AMD (0.01538), R 2 (0.97603) and RMSE (0.02746). Overall, volume models with two independent variables (DBH and total height) performed better than those with only one (DBH) based on the model evaluation and validation. The models developed in this study can provide forest managers with accurate estimations for the stem volumes of Quercus glauca in the subtropical forests of Jeju Island, Korea.