Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Machine learning is an expanding field with an ever-increasing role in everyday life, with its utility in the industrial, agricultural, and medical sectors being undeniable. Recently, this utility has come in the form of machine learning implementation on embedded system devices. While there have been steady advances in the performance, memory, and power consumption of embedded devices, most machine learning algorithms still have a very high power consumption and computational demand, making the implementation of embedded machine learning somewhat difficult. However, different devices can be implemented for different applications based on their overall processing power and performance. This paper presents an overview of several different implementations of machine learning on embedded systems divided by their specific device, application, specific machine learning algorithm, and sensors. We will mainly focus on NVIDIA Jetson and Raspberry Pi devices with a few different less utilized embedded computers, as well as which of these devices were more commonly used for specific applications in different fields. We will also briefly analyze the specific ML models most commonly implemented on the devices and the specific sensors that were used to gather input from the field. All of the papers included in this review were selected using Google Scholar and published papers in the IEEExplore database. The selection criterion for these papers was the usage of embedded computing systems in either a theoretical study or practical implementation of machine learning models. The papers needed to have provided either one or, preferably, all of the following results in their studies—the overall accuracy of the models on the system, the overall power consumption of the embedded machine learning system, and the inference time of their models on the embedded system. Embedded machine learning is experiencing an explosion in both scale and scope, both due to advances in system performance and machine learning models, as well as greater affordability and accessibility of both. Improvements are noted in quality, power usage, and effectiveness.
Machine learning is an expanding field with an ever-increasing role in everyday life, with its utility in the industrial, agricultural, and medical sectors being undeniable. Recently, this utility has come in the form of machine learning implementation on embedded system devices. While there have been steady advances in the performance, memory, and power consumption of embedded devices, most machine learning algorithms still have a very high power consumption and computational demand, making the implementation of embedded machine learning somewhat difficult. However, different devices can be implemented for different applications based on their overall processing power and performance. This paper presents an overview of several different implementations of machine learning on embedded systems divided by their specific device, application, specific machine learning algorithm, and sensors. We will mainly focus on NVIDIA Jetson and Raspberry Pi devices with a few different less utilized embedded computers, as well as which of these devices were more commonly used for specific applications in different fields. We will also briefly analyze the specific ML models most commonly implemented on the devices and the specific sensors that were used to gather input from the field. All of the papers included in this review were selected using Google Scholar and published papers in the IEEExplore database. The selection criterion for these papers was the usage of embedded computing systems in either a theoretical study or practical implementation of machine learning models. The papers needed to have provided either one or, preferably, all of the following results in their studies—the overall accuracy of the models on the system, the overall power consumption of the embedded machine learning system, and the inference time of their models on the embedded system. Embedded machine learning is experiencing an explosion in both scale and scope, both due to advances in system performance and machine learning models, as well as greater affordability and accessibility of both. Improvements are noted in quality, power usage, and effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.