Idiosyncratic drug-induced liver injury (iDILI) by flucloxacillin presents as both cholestatic and hepatocellular injury. Its mechanistic steps are explored in the present analysis as limited data exist on the cascade of events leading to iDILI in patients with an established diagnosis assessed for causality by the Roussel Uclaf Causality Assessment Method (RUCAM). Studies with human liver microsomes showed that flucloxacillin is a substrate of cytochrome P450 (CYP) with ist preferred isoforms CYP 3A4/3A7 that toxified flucloxacillin toward 5′-hydroxymethylflucloxacillin, which was cytotoxic to human biliary epithelial cell cultures, simulating human cholestatic injury. This provided evidence for a restricted role of the metabolic CYP-dependent hypothesis. In contrast, 5′-hydroxymethylflucloxacillin generated metabolically via CYP 3A4/3A7 was not cytotoxic to human hepatocytes due to missing genetic host features and a lack of non-parenchymal cells, including immune cells, which commonly surround the hepatocytes in the intact liver in abundance. This indicated a mechanistic gap regarding the clinical hepatocellular iDILI, now closed by additional studies and clinical evidence based on HLA B*57:01-positive patients with iDILI by flucloxacillin and a verified diagnosis by the RUCAM. Naïve T-cells from volunteers expressing HLA B*57:01 activated by flucloxacillin when the drug antigen was presented by dendritic cells provided the immunological basis for hepatocellular iDILI caused by flucloxacillin. HLA B*57:01-restricted activation of drug-specific T-cells caused covalent binding of flucloxacillin to albumin acting as a hapten. Following drug stimulation, T-cell clones expressing CCR4 and CCR9 migrated toward CCL17 and CCL25 and secreted interferon-γ and cytokines. In conclusion, cholestatic injury can be explained metabolically, while hepatocellular injury requires both metabolic and immune activation.