Fibroblasts act as important immune regulatory cells via their ability to cross-talk with T cells accumulating in lesions.Our previous study showed that fibroblasts produce several cytokines and chemokines by crosslinking HLA class II (HLA-II) molecules with monoclonal antibodies or by making T-cell receptor-peptide-HLA complexes. It is thus conceivable that the interaction of T cells and fibroblasts via HLA-II affects fibroblast responses to stimuli. This study used human gingival fibroblasts (HGF) to investigate possible effects of these fibroblast-derived soluble factors on the differentiation of naïve T cells and on the subsequent fibroblast responses. After mixed lymphocyte reaction culture between naïve T cells and allogeneic dendritic cells in the presence of culture supernatant from HGF stimulated via HLA-DQ molecules (DQ-sup), but not via DR, T cells exhibited a Th2-shifted phenotype, thereby producing quantitatively more IL-13 and IL-5 compared with interferon-g. Astonishingly, analyses to identify possible factors affecting the Th2 polarization secreted from HLA-IIstimulated HGF, prostaglandin E 2 , was detected only in DQ-sup. The Th2 polarization of naïve T cells was blocked in the presence of supernatants from indomethacin-treated HGF with HLA-DQ stimulation. In addition, we found that the culture supernatants of Th cells activated following mixed lymphocyte reaction culture in the presence of DQ-sup had the potential to induce gene expression of type I and III collagens in HGF. These results suggested that fibroblasts stimulated via HLA-DQ molecules promote Th2 polarization in Th-cell responses and showed the counter activation of collagen synthesis, implicating orchestrated responses among these cells in the fibrosis of chronic inflammatory lesions.