Background
Gliomas are one of the most common primary tumors of the central nervous system, and have an unfavorable prognosis. SLC39A1 is a zinc ion transport protein which inhibits the progression of prostate cancer. By studying the role and mechanism of SLC39A1 in the progression of gliomas, perhaps a new therapeutic target can be provided for their treatment.
Method
The TCGA, CCGA, GSE16011, GSE44971 and GSE11260 data sets were employed to evaluate the expression level of SLC39A1 in paracancerous and glioma tissues. In addition, Kaplan–Meier analysis, Cox analysis, and the ESTIMATE and CIBERSORT algorithms were used to analyze its prognostic value and immune infiltration correlation. A CCK-8 and flow cytometer were used to measure the effects of SLC39A1 on U87 cell proliferation or apoptosis; RT-qPCR and western blot were used to detect its effects on the expression of MMP2\MMP9.
Results
SLC39A1 has up-regulated expression in glioma tissues. High SLC39A1 expression predicted significantly worse survival. Univariate and multivariate analysis show that SLC39A1 independently indicated poor prognosis in patients with gliomas. The expression of SLC39A1 is significantly correlated with clinical pathological parameters such as Grade, IDH mutation status, and 1p19q codeletion status. In vitro experimental results show that SLC39A1 promotes proliferation of glioma cells, inhibits their apoptosis, and promotes expression of MMP2\MMP9. In addition, it may affect infiltration of immune cells into the glioma microenvironment.
Conclusion
SLC39A1 may serve as a new prognostic biomarker and potential target for treatment of gliomas.