BackgroundIxodes ricinus is the predominant tick species in Europe and the primary pathogen vector for both humans and animals. These ticks are frequently involved in the transmission of Borrelia burgdorferi (sensu lato), the causative agents of Lyme borreliosis. While much more is known about I. ricinus tick-borne pathogen composition, information about temporal tick-borne pathogen patterns remain scarce. These data are crucial for predicting seasonal/annual patterns which could improve understanding and prevent tick-borne diseases.MethodsWe examined tick-borne pathogen (TBP) dynamics in I. ricinus collected monthly in a peri-urban forest over three consecutive years. In total, 998 nymphs were screened for 31 pathogenic species using high-throughput microfluidic real-time PCR.ResultsWe detected DNA from Anaplasma phagocytophilum (5.3%), Rickettsia helvetica (4.5%), Borrelia burgdorferi (s.l.) (3.7%), Borrelia miyamotoi (1.2%), Babesia venatorum (1.5%) and Rickettsia felis (0.1%). Among all analysed ticks, 15.9% were infected by at least one of these microorganisms, and 1.3% were co-infected. Co-infections with B. afzeli/B. garinii and B. garinii/B. spielmanii were significantly over-represented. Moreover, significant variations in seasonal and/or inter-annual prevalence were observed for several pathogens (R. helvetica, B. burgdorferi (s.l.), B. miyamotoi and A. phagocytophilum).ConclusionsAnalysing TBP prevalence in monthly sampled tick over three years allowed us to assess seasonal and inter-annual fluctuations of the prevalence of TBPs known to circulate in the sampled area, but also to detect less common species. All these data emphasize that sporadic tick samplings are not sufficient to determine TBP prevalence and that regular monitoring is necessary.