All cells possess signaling pathways designed to trigger antiviral responses, notably characterized by type I interferon (IFN) production, upon recognition of invading viruses. Especially, host sensors recognize viral nucleic acids. Nonetheless, virtually all viruses have evolved potent strategies that preclude host responses within the infected cells. The plasmacytoid dendritic cell (pDC) is an immune cell type known as a robust type I IFN producer in response to viral infection. Evidence suggests that such functionality of the pDCs participates in viral clearance. Nonetheless, their contribution, which is likely complex and varies depending on the pathogen, is still enigmatic for many viruses. pDCs are not permissive to most viral infections, and consistently, recent examples suggest that pDCs respond to immunostimulatory viral RNA transferred via noninfectious and/or noncanonical viral/cellular carriers. Therefore, the pDC response likely bypasses innate signaling blockages induced by virus within infected cells. Importantly, the requirement for cell-cell contact is increasingly recognized as a hallmark of the pDC-mediated antiviral state, triggered by evolutionarily divergent RNA viruses.
The innate immune response represents the first line of defense against many pathogens. This response is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) by cellular pathogen recognition receptors (PRRs), including Tolllike receptors (TLRs). This leads to the production of antiviral molecules, including interferons (IFNs), a broad range of interferon-stimulated genes (ISGs), and inflammatory cytokines. This first line of host response suppresses viral spread and jump-starts the adaptive immune response.Dendritic cells (DCs) serve as unique immune sentinels, surveying tissues, sensing infection and inflammation, sampling potential antigens, integrating these peripheral cues, and instructing both the innate and the adaptive immune system accordingly. Through this array of specialized functions, DCs orchestrate powerful pathogen-directed immunity and are pivotal in the regulation of viral pathogenesis. Different DC subsets respond in unique and specialized fashions to orchestrate antiviral responses. Among these, plasmacytoid dendritic cells (pDCs) are key players in the early antiviral responses, notably by their ability to produce a large amount of type I IFN (IFN-⣠and IFN-â€) (i.e., 1,000-fold more than other cell types) and type III IFN (IFN-/interleukin-28 [IL-28]/IL-29) (reviewed in reference 1). Their response is rapid and triggered mainly by the endosomal sensors TLR7 and TLR9, which recognize viral nucleic acids (RNA and DNA, respectively).The type I IFN response induced by pDCs is thought to be a key part of their role in the resolution of viral infections (1), especially at the acute phase. Direct evidence is still limited in human studies; nevertheless, an association between the resolution of viral infections and pDC functionality has been reported for certain viruses. For example, pD...