Introduction: The aim of this study was to investigate the allele and genotype frequencies of 8 human platelet antigen (HPA) systems among blood donors from the Blood Transfusion Institute of Serbia and to compare them with published studies. These data would be useful to establish the basis for a platelet apheresis donor registry. Material and Methods: Seventy-two unrelated male platelet apheresis/blood donors from Serbia were typed for 8 HPA systems (HPA-1 to HPA-6, HPA-9, and HPA-15) via the FluoGene method, based on polymerase chain reaction-sequence-specific amplification (PCR-SSP; PCR using sequence-specific primers) with fluorometric signal detection. Allele and genotype frequencies were estimated by direct counting and compared to the expected genotype frequencies according to the Hardy-Weinberg principle. The transfusion mismatch probability was calculated for every HPA specificity. Results: The allele frequencies were: HPA-1a, 0.868; HPA-1b, 0.132; HPA-2a, 0.917; HPA-2b, 0.083; HPA-3a, 0.611; HPA-3b, 0.389; HPA-5a, 0.903; HPA-5b, 0.097; HPA-9a, 0.993; HPA-9b, 0.007; HPA-15a, 0.472; and HPA-15b, 0.528. For HPA-4 and HPA-6 only allele a was detected. Discussion: The HPA allele frequencies of European populations showed no significant differences in comparison with our results. Statistically significant differences were revealed in comparison with some populations of non-European origin. In the tested donors no HPA-2 bb genotype was detected, but we found 1 donor with the rare HPA-9b allele. The biggest transfusion mismatch probability in the Serbian population is for systems HPA-15 (37.4%) and HPA-3 (36.2%), which means that more than a third of random transfusions could cause mismatch in these systems. This study was enabled by the introduction of molecular HPA typing, and it provides initial results of the HPA allele and genotype frequencies in the population of blood donors in Serbia. They will be used to provide a compatible blood supply on demand for treating patients with alloimmune thrombocytopenic disorders. The successful implementation of PCR-SSP with fluorometric signal detection could be further complemented in the future by the introduction of high-throughput methods, which will largely depend on the available financial resources.